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AN INTEGRAL INEQUALITY WITH APPLICATIONS : e
TO ORDER STATISTICS

by

Philip J. Boland and Frank Proschan /q,/1i i
M

- ABSTRACT

We say the life distribution function G majorizes the life distribution

function F (written G z F) if

[ G(tydt =2 [ F(t)dt for all x 2 0
X X
and £ G(t)dt = g F(t)dt < + =

An integral inequality is proved giving sufficient conditions on functions

¥ and ¢ in order to ensure that whenever Gi v Fi for i=1,..., n, then

{ w(tn(El(t),...,En(t))dt < { w(tmflct),...,Fn(t))dt.

Applications in reliability theory and order statistics are given.
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1. Introduction.
For given life distribution functions F and G, the respective survival
functions are F = 1-F and G = 1-G. We define the partial ordering ¥ on the

class of life distributions with finite means by G 3 F (m for majorization) if

(1.1) [ B(tydt = [ F(ryae for all x 2 0 i
X X
and

(1.2) Mg =Z G(t)dt = J F(t)dt = Mg <+ e

If X and Y are nonnegative random variables with respective distribution
functions F and G, then Ross [11] says "Y is more variable than X" (written
Y 2, X or G 2, F)if (1.1) holds. Stoyan [14] equivalently defines Y to be
""larger in mean residual life" than X (written G 2. F or in previous publi- '
cations Gcg)F) if (1.1) holds. Bessler and Veinott [3] use the terminology
"Y is stochastically larger in mean than X." The notation of Stoyan (¢ for
convex) is suggested by the following characterization:

Gz.F

(o
«© @©

{ ¥(t)dG(t) 2 { ¥(t)dF(t)

holds for all increasing (that is nondecreasing)
convex functions ¥, provided the integrals exist.

For life distribution functions F and G, G ®Fif and only if G 2. F

(or G 2, F)and G and F have equal finite means (up=ug). For distribution
functions with finite means, the following useful characterization of G e
(see for example Ross [11] or Stoyan [14]) is an immediate corollary of

Theorem 2.1:
¢%F

L J

g ¥(t)dG(t) 2 g ¥(t)dF(t)

holds for all convex functions ¥, provided the integrals exist.




We note in particular that if G 3 F, then
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o = | (t-ug)?d6(e) = [ (t-up)?dF(t) = %

Hence G > F implies that the life distribution represented by G is 'more

dispersed' than that represented by F around their common mean.

For life distribution functions F and G with a common mean, G PFis

a more general relationship than G2 F (F is star shaped with respect to G).

When F and G are continuous life distributions (where F(0) = G(0) = 0, F and

G have interval support and G is strictly increasing on its support), then

G z Fif G'lF(x) is star-shaped (that is

If G 2 F and F and G have a common mean, then F(x) crosses G(x) once and from

G-1F(x)
X

is increasing for x > 0).

above as x:0 + =, so that in particular G 2F (see Barlow and Proschan [21]}.

For a continuous life distribution function F with mean u, let us define

-X
G{x) = l-e /u to be the exponential distribution with the same mean.

F is IFRA (increasing failure rate average) <> G 3 F, and F is HNBUE (harmonic

Then

new better than used in expectation) <=> G T F. See Klefsjo [6] for further

properties of HNBUE distributions.

If F and G are two life distribution functions with common mean and

F(x) crosses G(x) once and from above as x:0 + =, then G 4 F, however the

converse is clearly not true.

0

1/,
1

F(x) =

0

Then G B F and G 'crosses' F three times.

PEFRISE S

X <2 0
2 s x<4 G(x) = Vu
4 < x
1
——v——F
[ |
| I |
EllI
:I
| I |
P
N
1 2 3 & 5

For example let F and G be defined as follows:

x <1
1sx<3
3<x<5
5 sx




-3 - ;
A vector b = (bl""’bn) majorizes the vector a = (al,...,an) if

n n
.2 briy 2 .E a7 for k=2,...,n

) )
and b,. = ar. »
i=1 [1] i=1 [1]

where the b[i]'s and a[i]'s are the components of b and a respectively in
ascending order. When b majorizes a we write g_glg.
Suppose now that b and a are n dimensional vectors with nonnegative
components such that E_E.g. If G and F are respectively the distribution
functions for the uniform distributions on the components of b and a, then ;
G > F. This is our motivation for using the letter m for our partial

ordering on the family of life distribution functions with finite means.

2. An Integral Inequality.

The following theorem is a variant of an integral inequality obtained q
by Fan and Lorentz [4]. }

Theorem 2.1. Let ¢ = [0,1]n + [0,») be a continuous increasing function,
and assume that for i=l,...,n, Fi and Gi are life distribution functions

where G, E F..
i i

a) If y is nonnegative decreasing, ¢ is convex in each variable
separately and ¢ satisfies the following property:

2.1) 0(ui+ h, uj+ k) - O(ui+ h, uj) - O(ui, uj+ k) + O(ui, uj) 20

for all i =j, 0¢< u, < u+ hsl1l, O0s “j £ uj+ ksl
(where we have used the notational simplification of omitting those arguments
of & which are the same in a given formula),

then providing the integrals exist,
[_J

(2.2) { V()G (t),..., G (t))dt < gw(t)O(Fl(t)...., F (t))dt.

B e A oA . - = etk b T eor e pogh A Wi
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b) If ¢ is nonnegative increasing, ¢ is concave in each variable
separately and & satisfies the following property:

(2.3) @(ui+ h, uj+ k) - O(ui+ h, uj)-O(ui, uj+ k) + O(ui, uj) <0

for all i=j, 0 < u, < u, + hsl1l, 0s uj < uj+ k<1,

then providing the integrals exist

(2.4) { w(t)¢(E1(t),...,§£(t))dt 2 g V() o(F (t),...., F (r))de.

Proof: We prove only a), the proof of b) following in a similar fashion.

(1) 1Initially we show that it suffices to prove the result for the case

when Fl’ G, ,...s Fn’ Gn all have finite support. In turn to establish this

1’°

we show that if the inequality is valid whenever Fl and G1 have finite

support, then it is true in general.

Suppose now that F., G F_, Gn are arbitrary life distributions

1? Gpseees Fy

m
where Gi > Fi for i =1,...,n. Given ¢ > 0, we can find S so that

[ w(®)o(G (v),....T (t))dt < ¢ .
s

Now define Fl' and Gl' by
T =
Fi'(ty = F (1) t<s
0 t2s
G ' = G t<s S _ S _
[ F ()t - [ G (t)ae
- 0
G, (s) SstssSa .
G, (8)
0 otherwise,




-5 -

(if Ei(S) = 0, then both G1 and F1 have finite support). Then G,' >F ', and

1 1

Ju®e(F (), Fy(r),... F(1))de

v
(=1 ]

W(E)O(F ' (1), Fp(t),....F (t))dt

v
oM 8

¥(t)o(G ' (1), G,y(t),...,G (t))dt

v
o 8

Since ¢ is arbitrary, the conclusion follows.

(ii) It now remains to show that

[ w(t)e(G (¢),...,G (t))de < [ W(t)*(F,(t),...,F (t))dt
0 0

m
whenever Gi > Fi for all i = 1,..., n, and where the support of F.1 and

Gi ¢ [0,8] for all i =1,..., n.

Let € > 0 be given. As ¢ is continuous, there exists a § > 0 such
that whenever u, v ¢ [0,1]" and || u-v|| = max lu;-v,| < 8, then
i=1,...,n
lo(u) - ¢(v)] < £/259(0).
There exist only a finite number of points r in [0,S] where at least
one of Fl, Gl""’Fn’ Gn has a jump discontinuity with jump > /2. Hence

we can find an integer N large enough so that

(1) $(0)4rs sup [o]
€

and (2) on all but at most r of the N intervals [?,% },

S , S+l [(N-1)S NS
s [ps ),

i}

asx [Fi[i{.]-ii [SJ;,_IE]] <5 and mgx [51 ) -5 [LJ;_”—S]] <s.

W(t)¢(§i(t), E}(t),...,ﬁh(t))dt -€ .
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Hence for each i = 1,...,n, we define the following simple survival

functions:
(t) ( f(jﬂ)sm F, (t)de) /s/M
Fooge) = F.(t)dt) /s
i 3S/N i
and
_ (G+LIS/N _
G,h) = ( f Gi(t)dt)/S/N

jS/N

when t € [%?3 (.;I)S] for some j = 0,...,N-1, and zero otherwise.

m
Note that Gi" > Fi" for alli=1,...,n.

Moreover,

S S
[w@eF (t),... F (1)dt - [ w(t)e(F)" (t),....F (1))dt
0 0

I

Nil J(j+1)S/N

it () ¢(?ﬁ(t),...,f;(t))dt - @(?{'(t),...,ﬁ;‘(t)i]dt l

jS/N

< v(0)2r sup o] -ﬁ-+ £N (%)

< € .

S s
Similarly, jw(tn(&’l(t),...,En(t))dt - V() e (),..., G (t))dt| < e .
0 0

Therefore, it suffices to prove (2.2) for the case when all Fi’Gi are step
functions which are constant on [:Jﬁs'-, ( ;l)s] , j=0, -v., N-1. Furthermore,

without loss of generality we may assume that y is constant on each interval

of the form [Jﬁs-, (';I)S] for j =0, ..., N-1.




i

-7 -

m

(iii) Assume now that Gi > Fi for i = 1,...,n and that all 2n functions have
support in [0,S) and are constant on each interval [%?, ( ;1)5] for j=0,...,N-1.
We also assume ¥ is constant on each of these intervals and use the notational

2

simplification (j) = w[JNE] for j=0,...,N-1.

Each E& may be transformed into Fi by a finite succession of
transformations t of the following type (see Hardy, Littlewood and Pélya {51).

Tt changes the value vji of E; on the interval %?, ( ;1)5] into Vji+ h and

= ks (k+1)S] . _ .
the value Vii of Gi on [:N s N ] into Vii h where j < k and

0<sv,.-hsv.sv,.<v,. +h<l,
ki ki ji ji
Letting A denote the change in the integral / w(t)é(ﬁi(t),...,ﬁg(t))dt
0
resulting from such a transformation t, we complete the proof by showing

that AT 2 0. Without loss of generality i=1, and hence

[~
\

S .
ﬁ-{w(J)[O(vjl+ h, vjz,...,vjn) - ¢(vj1, Vigreeos vjn)]

- w(k)[(@(vkl,vkz,...,vkn) - ¢(vk1- h,vkz,...,vkn)]}

v

S
'P(k)N-{‘P(VJl*' h’ij’ L »an) - ¢(Vj1 ,ij s e ,an)

-(¢(vj1+ h’vk2""’vkn) - ¢(vj1,vk2,...,vkn))}

(since ¢ is convex in each variable separately)
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_ S
= w(k)ﬁ{[@(vj1+ h,v, 5+ h2,...,vkn+ hn) - o(vjl,vk2+ h2""vkn+ hn)

- ¢(vj1+ h,vk2+ hz,...,vkn) + ¢(vj1,vk2+ hz,...vkn)]

+

[Q(vjl+ h,vk2+ hz’vk3’°"’vkn) - @(vjl,vk2+ hz’vk3""’vkn)
- ¢(vj1+ h’vkz""’vkn) + ¢(vj1,vk2,...,vkn)]}

2 0
(since ¢ satisfies property (2.1) and ¢ is nonnegative).

Here hi =V,. -V

ii ki for i =2,...,n.

Corollary 2.2 . Let G and F be life distribution functions with finite

means. Then G % F if and only if
a) For all nonnegative increasing continuous convex 3 and nonnegative
decreasing ¢,
o o«
[ere@m)at < [ vm)e(F())de

and

b) For all nonnegative increasing continuous concave ¢ and nonnegative
increasing ¥,

{) ¥(t)o(G(t))dt 2 {) v(t)o(F(t))de,
provided the integrals exist.

Proof. The only if part follows immediately from Theorem 2.1 . Assume
now a) and b) hold. Letting @(u)=uand¢&(t) = x[x,+~) (that is the
characteristic function of the interval [x,+)) it follows from b) that

@ [
J G(t)dt = [ F(t)dt for all x 2 0. Taking y(t)=l, it follows from a) that
X x

UF IJG-
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Corollary 2.3. If G and F are life distributions with finite means, then

m
Proof. The if part of the result is immediate. Now suppose G > F. It

GO F

<>

(2.5) t};\l’(t)dG(t) 2 g‘#(t)dF(t)

holds for all convex functions ¥, provided the integrals exist.

suffices to prove (2.5) for the case where ¥ has derivative ¢ and ¥(0)=0.

Then

g ¥(t)dG(t) g v(t)G(t)dt

[}

[fo()-9(@IB(t)dt + w(O)ug

v

[Co(e)-9(0) IF(t)dt + w(0)u, (by Theorem 2.1)
0

[ ¥(t)dF(t).
0

Remark 2.4. Another approach to (2.5) in the proof of Corollary 2.3 is

m
as follows. Suppose G > F. Let Z_ and ZF be the random variables with

G

X X
— _ st
respective densities — [ G(t)dt and — [ F(t)dt. Then Z. > Z_ (Z. is

Mg 0 Mg 0 G F *°G

stochastically larger than ZF) and hence (see for example Ross [11])

E(w(ZG)) 2 E(w(ZF)) for all increasing ¢. But
[ v0Eyde = E(W(Zy) 2 E(W(Zp) = [ v(t)F(e)d.

3. Agglications.

Theorem 3.1. Let Xl,...,xn,Yl,...,Yn be independent nonnegative random
variables where xi v Fi and Yi N Gi for i=1,...,n, and let xtl],..., X[n]

and Y[l]""’Y[n] be respectively the X (Y) observations in increasing order.
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m
Assume that Gi > Fi for i=1,...,n. Then

a) jP[Y >t]dt 2 [ PIX. +...+ X, ;>tldt
x (n] (k]

[nd ¥ Yik3

for all x 2 0 and k = 1,2,...,n.

b)  (EY[ qse - EY[ ) 2 (EXpyyse- - oEXppq)

Proof. b) follows immediately from a). In what follows ¢ = (el,...,en)

will denote any vector whose components are zeroes or ones. For i = 1,...

define ¢,:[0,11" > [0,+=) by

¢i(u1,-.-.un)

[]
M
[+
~
[
[]
[=1
—
~
[
=4
~—

+...+€_ 2 n-i+l
n

We note that EX 4 = g ¢, (F (t),...,F (t))dt for i = 1,...,n. Now for

k =1,...,n we define

n
Qk (ul,...,un) = _E ¢i(u1,...,un)
i=k

n
Il 13

n
L 2 u, cee Ul (l-ul) ...(l-un)
Es€qt. . tE 2 n-i+l
n € 1- El 1-¢
.Zmin(j,n-k+1) ) u un M- -u;) o (1-u)
J=1 E,El"'..n"en:_)

n

Since [ PIX. -#...+ X, > tldt = [ & (F (¢),...,F (t))dt,
x [n] [kl X k*'1 n

it suffices by Theorem 2.1 b to show that each Ok satisfies (2.3) and
is concave increasing in each variable separately.

€2 € l-¢

Now k(ul,...,u ) = Z 2 uz ...y n(l-uz) .?..(l-un)

j=0 e 1262 %€ =]

where €, represents an n-1 component vector of zeroes and ones.

,N, we
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As @k(ul,...,un) is symmetric in Upseneslps it follows that Qk is an
increasing function linear (and hence concave) in each variable separately.
For a continuously twice differentiable function ¢ on [O,l]n, it is easy to

verify that the following conditions are equivalent (see Lorentz [7]):
(3.1) Q(ui+ h, uj+ k) - ¢(ui+ h, uj) - ¢(ui,uj+ k) + ¢(ui, uj) 20

for all i#j, 0 <u. £u,+h=<1l, 0<Su, su+k=l,
1 1 ] ]

(3.2) Q(ui+ h, uj+ h) - ¢(ui+ h, uj) - ¢(ui,uj+ h) + o(ui,uj) 20

for all i#j, 0 <u. €u+h<1, 0<u, cu+h=<l.
1 1 J J

(3.3) du., 3u.
1 J

>
1,...,un) 20

for all i=#j.

Therefore, due to the symmetry of ¢k and the above equivalence, it suffices

to note that

] 3 n n
Su- 3u % (Upeeeew) = - 1w up © (l-ug)  ...(l-w)
1 2 512,s3+...+en=n-k

(where € represents an n-2 component vector of zeroes and ones).
£ P

Remark 3.2. Let (xl,...,xn) and (Yl,...,Yn) be random samples of size n from
populations with life distribution functions F and G respectively. Barlow and

Proschan (1] show that if G ; F where G and F have common mean, then

n
(EY[IJ""’EY[n]) > (EX[IJ,...,BX[n]).
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Shaked [13] proves the same result under the more general assumption that
m
C > F. His proof uses the characterization of Corollary 2.3 together with

the fact that

Wk(tl,...,tn) = t[n]+"'+ t[k]

is (separately) convex for each k. It follows that

EY[n]+...+ EY[k] = ({ wk(tl’."’tn)dc(tl)...dc(tn)

v

{ ¥ (t), .t JAF(t ). dF(t)

= EX +...+ EX

[n] k3

Remark 3.3 Suppose that for each a ¢ A, F(a) is distribution function
on R, and that y is a probability measure defined on a o-field of subsets

of A. One may define the n-variate distribution function(assuming appro-

priate measurability conditions on F(a))
- (a) (a) :
F(X[se00,%) = { Fr(x)) ... Froo(x )dv(a). ;
& If random variables xl""’xn have such a joint distribution function,
they are said to be 'positively dependent by mixture'. Given xl,...,xn

positively dependent by mixture, let Y ,...,Yn be independent random

1
3 variables where Yi is distributed as Xi for i = 1,...,n. Shaked [12]
(See also Marshall and Olkin [9] and Proschan [10]) has shown that in this

case

]
(Ey[l]""’EY[n]) > (Eth]....EX[n]).

Remark 3.4 Theorem 3.1 shows that if Gi 3 Fi for all i=1,...,n, then for

n n
any k [ Y[i] is "more variable” than [ x[i] (in the terminology of
i=k

i= i=k
n
Ross [11]) or that J Y_..is "larger in mean residual life" than E Xe. :
isk [il ik (il
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{in the terminology of Stoyan [14]). Since Wk(tl,...,tn) = t[n]+...+ ty)

is convex, this also follows by using the result that if xl,...xn.Yl,

D A g B (e ¥M oA Wby el DT

...,Yn are independent and Yi is "more variable'" than Xi for i=1,...,n,

then Wk(Yl,...,Yn) is "more variable' than wk(x .,Xn) (see Ross [11]). i

1
Remark 3.5 If xl""’xn are independent HNBUE random variables, then
Theorem 3.1 b could be useful in constructing bounds on the expected order

statistics Ex[l]""’Ex[n]'

Example 3.6 Let us consider the following problem of general interest.

n components are to be purchased in order to form a coherent system (for
example a k out of n system), and all of the components are to be purchased
from either company A or company B. Let us suppose that each company makes
the claim that components of type i have mean life My (i=1,...,n), but

that company B is known to be 'more variable' than company A in the production
of any type of component. If we wish to maximize the mean life of the

system, from which company should we buy?

Let xl,...,xn and Yl,...,Yn be random variables representing the

i

i
|
lifetimes of the components from A and B respectively. If we can assume
that the components function independently within the system and that Y,

m
is more variable than Xi in the sense that Gi > Fi {where Xi N Fi and

Yi v Gi) for all i=1,...,n, then we know that

m
(EY[I]""’ EY[n]) > (Ex[l]""’ EX[n]).

In particular EY[1]' Ex[l] € 0 and EY[n]' Ex[n] 2 0. Therefore if our
system is a series system we would buy from A, while if it is parallel we

would buy from B. This result was observed by Marshall and Proschan (8].
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For a more general k out of n system, we would be interested in the

expected order statistics EX and EY in order to compare
[n-k+1] [n-k+1] P

companies A and B. Although

m .
(EYEIJ'.",EY[!\]) > (Ex[lla'-stx[n]): '

EY[i]' Ex[i]maytheoretically at least undergo many sign changes as i:l > n
even in the case when Fi=l= and Gi=G for all i=1,...,n. However under the
assumption that G £ F where G and F are continuous, G is strictly increasing
on its interval support and G(0)=F(0)=0, one may show that the number of sign
changes in EY[i] - Ex[i] is no greater than the number of sign changes in

n-1

G(x)-F(x) as x:0 += ., Since (i-l

order « in i and t, this follows using the variation diminishing property

] Fl'l(t)'Fn-l(t) is totally positive of

of totally positive functions and the identity
BY,.. - EX... = [ n(6 (D) - ) (1] FlE™ (b de
[i] il ¢ i-1

(see Barlow and Proschan [1]). In particular if F crosses G once then there

exists a constant C (depending on n, F and G) such that

EY ., - EX,., < O for i <C )

(il (il

and

EY[iJ - Ex[i] 20 for i > C.
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